Midplane Neutral Density Profiles in NSTX

D. P. Stotler
F. Scotti, R. E. Bell, A. Diallo, B. P. LeBlanc, M. Podesta, A. L. Roquemore, P. W. Ross

PPPL Theory Research & Review Seminar
July 24, 2015
• Describe a simulation based method for inferring midplane neutral density profiles from visible camera data.

• Get a range of values for 2010 NSTX discharges:
 \[n_D \sim 10^{16} \text{ m}^{-3}, \quad n_{D_2} \sim 10^{17} \text{ m}^{-3}. \]

• Validation quantifies uncertainties in simulation results \(\Rightarrow \) error bars and pointers for improving model & experiment.

• If you leave / fall asleep:
Multiple Needs for Main Chamber Neutral Density Profiles

- For other diagnostics & analyses
 - Neutral beam charge exchange loss power,
 - Interpretation of CHERS data.
- & for study of SOL & pedestal physics,
 - H-mode pedestal formation,
 - Edge plasma turbulence.

[S. Medley, NF (2004)]
Visible camera \Rightarrow line integrated emission rates.
Abel inversion \Rightarrow volumetric rate S.
Balmer-β emission rate:

$$S_\beta = n_D(1s) \left[\frac{n_D(n = 4)}{n_D(1s)} \right] A_{4\rightarrow2} \equiv n_D F(n_e, T_e),$$

$\Rightarrow n_D = S_\beta / F(n_e, T_e).$

But, S_β & F both significant only in narrow radial region,
DEGAS 2 based “forward” method for inferring $n_D(R), n_{D_2}(R)$ provides more information, smaller uncertainties.
DEGAS 2 Monte Carlo Neutral Transport Code

- Simulate behavior of neutral species in a plasma.
 - Plasma-wall interactions generating neutral atoms & molecules, e.g., recycling.
 - Interactions between those neutral species with plasma ions & electrons as they penetrate.
- Input to DEGAS 2:
 - Geometry: 2-D or 3-D outline of hardware & flux surface aligned mesh for plasma.
 - Plasma density, temperature, flow velocity everywhere.
 - Source of neutrals: recycling, gas puff, recombination,
- \(\Rightarrow \) Volumetric sources / sinks of plasma mass, momentum, & energy due to those interactions (e.g., for coupling to plasma codes).
- & Synthetic diagnostic data for experimental comparison,
 - Neutral pressure,
 - Light emission,
 - Wall fluxes.
Method Leverages Off Successful Midplane Gas Puff Imaging Simulations

- See: [B. Cao et al., Fusion Sci. Tech. 64, 29 (2013)].
- Relies on nearby $n_e(R) \& T_e(R)$ from Thomson scattering,
 - & assuming $n_e(R) \& T_e(R)$ constant on flux surface \Rightarrow know everywhere.
- Flux surface shapes from EFIT,
 - Thomson profiles mapped via $R \Rightarrow$ not sensitive to separatrix location.
Validated DEGAS 2’s Description of D$_2$ Penetration from Far SOL

- D$_\alpha$ radial profiles from D$_2$ puff matched within estimated uncertainties.
- & matches absolute magnitude,
 - Camera absolutely calibrated,
 - Know total amount of gas injected
 ⇒ compare photons recorded / D injected.
 - GPI: $1/89 \pm 34\%$,
 - DEGAS 2: $1/75 \pm 18\%$.
- ⇒ DEGAS 2 provides adequate model for D$_2$ penetration of NSTX midplane.
Key Data: Passive Light Emission from Edge Neutral Density Diagnostic (ENDD)

- Absolutely calibrated tangential camera,
 - ⇒ Radial profile, 1.6 mm resolution.
- 3.7 ms exposure time = 268 frames / second.
 - ⇒ integrates over ELMs.
- 20 cm radial × 9 cm poloidal.
- Has D_β filter for shots considered here.
- Complete spatial calibration ⇒ can build DEGAS 2 synthetic diagnostic.

[Bay I diagram]

Set Up DEGAS 2 Simulations Similar to Those Used for GPI

• Geometry & plasma setup procedures derived from those used for GPI [B. Cao et al., Fusion Sci. Tech. 64, 29 (2013)],

• Geometry based on EFIT flux surface contours,

• Plasma profiles from Thomson & CHERS,
 – Use CHERS to estimate n_{D^+}/n_e & T_i/T_e,
 – $T_i = T_e$ for shots used here.

• Primary differences from GPI:
 – Nature of D$_2$ source,
 – Synthetic diagnostic for D$_\beta$ ENDD,
 – Baseline runs ignore D$_\beta$ from molecules.
Source Characterization & Analysis
Procedure Specific to ENDD

- Actual sources difficult to characterize:
 - Neutral flow from divertor,
 - Main chamber recycling,
 - Or outgassing.

- Postulate vertically uniform D_2 source coming from vessel walls,
 - Will show results very insensitive to this assumption.
 - Assign arbitrary magnitude: $\Gamma_{D_2} = 10^{20} \ D_2/(m^2 \ s)$ at wall.

- Compare synthetic ENDD signal with experimental image:
 - Use horizontal row of simulated ENDD pixels at $Z = 9 \ cm$,
 - Overlay with row from calibrated experimental ENDD smoothed over vertical 10 pixels (1.4 cm)
 - Overall scale factor for simulation.

- Focus here on 2-D / axisymmetric calculations.
ENDD Geometry

- Scintillator Fast Lost Ion Probe [sFLIP, Darrow, RSI (2008)]: used for initial 3-D runs. But, not here.
Emission Profiles Agree Reasonably

- Apply to two NSTX H-mode plasmas:
 - 139412 \(t = 4 \) s: \(\delta = 0.3 \), ELMy,
 - Lull at \(t = 0.4 \) s.
 - 142214 \(t = 4 \) s: \(\delta = 0.6 \), ELM-free.

- High SOL density, \(n_e \sim 10^{18} \) m\(^{-3} \) \(\Rightarrow \) Thomson accurate at all points.

- Take ratios of profile peaks:
 - 139412: ENDD = 2.5 \(\times \) DEGAS 2,
 - 142214: ENDD = 1.6 \(\times \) DEGAS 2.

- Good match confirms approach to inverting ENDD & adequacy of uniform D\(_2\) source ansatz.

- But, what is “good”?
 \(\Rightarrow \) that’s the point of validation!
Simulated Peak Location Tracks $T_e = 100$ eV

- 12 runs from 7 shots.
$R_{\text{ENDD}} - R_{\text{DEGAS2}}$ Ranges from $-1 \rightarrow 4$ cm

- Discrepancy larger for smaller R_{100}!
Physics? Diagnostic problem? Simulation problem?
• \(\Rightarrow \) Ranges of values at vessel wall, \(R = 1.7 \) m. **Key result!**

• But, how uncertain are they???
Estimated Uncertainties from ENDD Itself Are Small

- Absolute calibration of camera: 3%.
- Spatial calibration of camera: 3 mm
- “Blue shifting”: 8% magnitude,
 - Negligible effect on peak location.
- Li coatings on mirror?
 - Expect insignificant & not evaluated.

- Thomson scattering profiles uncertain due to random & systematic errors, as well as finite sampling volume.
- Do Monte Carlo sampling of these errors ⇒ 100 T_e, n_e profiles for 142214.
- ⇒ 100 runs ⇒ distribution of peak locations, neutral densities.
• Peak location standard deviation: 3 mm.
• Density standard deviations: $n_{D_2} : 6.6 \times 10^{16} \text{ m}^{-3}$, $n_{D} : 7.5 \times 10^{15} \text{ m}^{-3}$.
• Also, quantify sensitivity of densities to SOL T_e
Plasma & Separatrix Motion

1 cm Uncertainty in Peak Location

• Motion of plasma significant during 4 ms exposure
 \(\Rightarrow\) ENDD is an average.
• But, \(\sim 4\) frames between TS pulses. How to match up?
• 1 cm estimate from motion in 139396, 139432 & others.
Quantify Uncertainties Associated with Source Profile Assumption

- Relative deviations from baseline ENDD are \(\leq 18\% \),
- Density profiles differ by factor of 2 - 3 or less.
- Similar conclusions from runs with sources at bottom boundary.
Molecular Contributions May Be Important

\[e + D_2 \rightarrow e + D(1s) + D^*(n = 4), \]
\[e + D_2^+ \rightarrow e + D^+ + D^*(n = 4), \]
\[e + D_2^+ \rightarrow D(1s) + D^*(n = 4). \]

- In GPI: \(D_2 D_\alpha \sim 40\% \) of emission at peak. Here?
- Problem: \(D_\beta \) rates not as well tested as \(D_\alpha \)
 \(\Rightarrow\) only an estimate.
- Contributes 35 → 50\% of total emission!
- Active at lower \(T_e \) than D emission
 \(\Rightarrow\) can shift emission peak!
Effect of Charge Exchange Surprisingly Small!

- Remove CX from reaction list: < 19% difference in ENDD profile,
 - D, D_2 densities at wall drop 17, 13%.
- Even though $\langle \sigma v \rangle_{CX} > \langle \sigma v \rangle_{ion}$ over most of volume.
- Dominant process is instead D creation from D_2.
- CX is relevant for $R < R_{DEGAS2}$.
Summary

- Described method for inferring density profiles.
- Simulated ENDD profile peaks differ from measured by ≤ 4 cm,
 - Uncertainty due to plasma motion: 1 cm,
 - From preliminary $D_2\ D_\beta$ emission model: ≤ 2 cm.
- Factors preventing more complete resolution:
 - Plasma parameters in SOL,
 - Plasma motion & synchronization,
 - $D_2\ D_\beta$ model,
 - Unaccounted for camera calibration issues.
- Nonetheless, deviations small compared with problem scale \Rightarrow can use results to get approximate densities.
- $\Rightarrow n_D = 1$ to 7×10^{16}, $n_{D_2} = 2$ to 9×10^{17}.
Can We Compare Vessel Densities with Micro-Ion Gauge Data?

- Survey C-mid, E-mid, IG 110 pressures in 17 shots,
 - Averaged over 0.1 or 0.2 s interval,
 - IG 110 shifted 0.18 s.

- No obvious correlation between them!
- Each is compromised:
 - C-mid very noisy (low end of operating range?),
 - E-mid direct view of plasma ⇒ affected by ELMs,
 - IG 110 slow to respond.

- Can only get an upper bound or range of vessel densities.
- Similarly, see no correlations with peak ENDD emissivity.