A new hybrid Lagrangian numerical scheme utilizing phase space grid for XGC1 edge gyrokinetic code

S. Ku
Princeton Plasma Physics Laboratory, USA

In collaboration with
R. Hager, C.S. Chang

Research and Review Seminar, August 28th 2015
Outline

• Tokamak edge plasmas and XGC1
• Total-f (full-f), conventional δf, and total-δf PIC
• New hybrid Lagrangian scheme
 – Needed for edge simulation (reduces weight-growth from wall-loss, enables non-linear collision)
 – Use both particle and v-space-grid
 – Direct weight evolution
 – Used in XGC1/a for all physics
• Example in a simple ITG turbulence case
 – The α-factor and numerical dissipation
 – Homogeneous marker distribution in v-space
Tokamak Edge Plasmas

- Non-Maxwellian
 - Steep H-mode gradient
 - In-contact with wall
 - Strong turbulence level
 \(\frac{\delta n}{\langle n \rangle} \sim 10\% \)

- Sources and Sinks
 - Wall loss
 - Neutral atoms
 - Radiative cooling
XGC1: X-point included Gyrokinetic Code

• Uses experimental EFIT data
 – Magnetic fields
 – Divertor and limiter

• Fully nonlinear Fokker-Plank – Landau collision on v-space grid

• Logical sheath to handle wall boundary

• Built-in neutral Monte-Carlo routine and atomic cross sections

• GPU+CPU hybrid capability

• Good weak and strong scaling to maximal capability of the leadership HPCs (titan, mira, and edison).
PIC simulation of Tokamak plamsas: Total-\(f \) vs conventional \(\delta f \)

- **Total-\(f \) (Full-\(f \)):** Solve \(f \) directly without manipulation
 - \(\frac{Df}{Dt} = C(f) + \text{Source} - \text{Sink} \)
 - Original XGC1
- **Conventional \(\delta f \) in Tokamak plasmas**
 - \(f = f_0(\text{fixed analytically}) + \delta f \)
 - \[
 \frac{D\delta f}{Dt} \equiv -\frac{D^* f_0}{D^* t} + C = -v_E \cdot \nabla f_0 + C
 \]
 - No neoclassical (grad-B drift) free energy on RHS
 - Scale separation between mean (\(f_0 \)) and perturbed \(\delta f \) is assumed
 - Main plasmas in most of core \(\delta f \) codes
Total-δf particle methods

- Total-δf
 - $f = f_0 + \delta f$
 - $\frac{D\delta f}{Dt} = -\frac{Df_0}{Dt} + C + \text{Source} - \text{Sink}$
 - D/Dt contains all physics
 - Mathematically identical to total-f
 - Mean and perturbed physics are solved together
 - Includes sources and sinks
 - δf can can become large due to strong neo-collisional drive, wall loss, sources, or long time evolution.
 - Growing weight and noise problem
 - Difficult to handle wall loss and non-linear collision
Comparison between total-\(f\) and total-\(\delta f\)

[Ku et al., Nuclear Fusion 2009]
- Non-flux driven solutions decay
- Transient behavior is different, caused by the different Monte-Carlo noise level, but time integrated heat flux is the same
- Meaningful steady state solutions agree.

\[
\text{Total } \delta f \sim 0.5 \text{m}^2/\text{s}
\]
New hybrid Lagrangian scheme

- Solve total-δf eq.
- $f = f_0 + f_P = f_a + f_g + f_P$, enables edge simulation
- f_0 contains slowly varying physics in time.
- f_a is a fixed analytic distribution function (e.g. Maxwellian).
- f_g is deviation from f_a on 5D grid.
- f_P represents δf particles, driven by the free energy in f_a and f_g.
- All physics information on continuum grid, with f_P moved to v-grid.

$$f = f_0 + f_P = f_a + f_g + f_P$$
New hybrid Lagrangian scheme

- Time evolution:
 - Step 1: Solve particle motion and weight evolution as in the total-δf scheme + S operation in v-grid
 \[
 \frac{Df_P}{Dt} = -\frac{D(f_a + f_g)}{Dt} + S(v\text{-grid})
 \]
 - Step 2: Redefine f_P and f_g with the following operation ($\alpha << 1$)
 \[
 f_P \leftarrow [1 - \alpha(X,V)]f_P, \quad f_g \leftarrow f_g + \alpha(X,V)f_P
 \]

Slowly varying in time
Fast varying in time
Direct weight evolution

- Gyrokinetic Vlasov-Boltzmann eq.
 \[
 \frac{Df_p}{Dt} = -\frac{Df_0}{Dt} + S(f)
 \]

- Differential form of weight evolution (2 weights, Hu and Kromess)
 \[
 \frac{dw_1}{dt} = \frac{(1-w_2)}{f_0} \left[\frac{Df_0}{Dt} + S \right] \\
 \frac{dw_2}{dt} = \frac{(1-w_2)}{f_0} \frac{Df_0}{Dt}
 \]

- Direct weight evolution (new)
 \[
 \frac{(1-w_2)}{f_0} = \text{constant} \\
 \Delta w_1 = \Delta w_2 + S \frac{(1-w_2)}{f_0} \Delta t
 \]
 - Maker particles conserve phase space density
 - Unlike conventional \(\delta f \): Due to inaccuracy in \(D^*/D^*t \) operation
 - Avoid \(w_2 \) errors from time integrator and \(D/Dt \) error from gradient
Weight evolution of wall loss

• Marker particle is reflected at wall
 – Elastic reflection
 – Conserve phase space volume
 – \(w_2 \) remains the same
 – cf. reflection by sheath potential

• \(f = 0 \) with wall loss
 – Reflected marker particle cancels \(f_0 \)

\[
\begin{align*}
 w_1 &= -1 + w_2 \\
 f &= f_0 + w_1 g = 0 \\
 (1 - w_2) g &= f_0
\end{align*}
\]
Advantage in continuum grid

- Weight reduction using v-space f_g
- Continuum space physics operation with f_p moved to continuum grid
 - Nonlinear collision
 - Neutral ionization and C-X
 - Radiation
ITG turbulence in cyclone geometry

- Collisionless
 - Collision capability presented by R. Hager
- 0.3M real space grid
- 32 by 31 v-space grid
 - Slow physics on v-grid
- 400M particles
 - 1500 ptls/real space grid
 - 1.5 ptls/v-space grid
 - Fast physics in the particles
α factor and numerical dissipation

\[f_p \leftarrow (1 - \alpha) f_p \]
\[f_g \leftarrow f_g + \alpha f_p \]

- Non-flux driven, total-deltaf
- Particle \(\rightarrow\) v-space operation gives numerical dissipation from interpolation (damping of Landau resonance).
- Too large \(\alpha\) reduces turbulence and time integrated heat flux
- Optimal \(\alpha \sim C(\Delta v) \Delta t/[\text{turbulence corelation time scale}]\)
V-space grid resolution also matters

- Fine grid: v-space grid from 32 x 31 to 62 x 61
- Reduced numerical dissipation in v-space \rightarrow restore original heat flux even at $\alpha = 0.004$

Research and Review Seminar, August 28th 2015
Homogeneous probabilistic marker initialization in v-space for better statistics at higher energy

Number of particles in v-space cells

Maxwellian distribution

Homogeneous distribution
Homogeneous Marker distribution in v-space and greater # of particles can allow bigger α

- Homogeneous marker distribution gives better statistics
- Maxwellian distribution resembles less # ptls results
Particle Noise Reduction

- Variance of w_1g in v-space cell (g: Marker distribution)
- $\alpha = 0.001 \rightarrow$ reduce particle noise variance by 4 in 1500 time steps.
- Particle noise reduction
Flux driven simulation

- Heat and cooling is applied to near axis and edge
- Close to steady state
- \(\alpha = 0 \) and \(\alpha = 0.001 \) converges to similar gradient.
- Time integrated heat flux is different for \(\alpha = 0.01 \) from \(\alpha = 0 \).
Summary

• A new hybrid Lagrangian scheme for gyrokinetic simulation of tokamak edge plasma is implemented in XGC1.
 – Combination of particle and continuum
 – Lagrangian particle push
 – Difficult physics operation and noise reduction in continuum space
 – Direct weight evolution and homogeneous marker distribution help simulation accuracy

• The new scheme is equivalent to ‘total-f’ with
 – Sources and Sinks
 – Non-maxwellian distribution

• \(f_{\text{particle}} \) is slowly converted to \(f_{v\text{-grid}} \).
 – Slow time varying function \(\rightarrow v\text{-space grid} \)
 – Fast time varying function remains in particles
 – Magnitude of \(\alpha \) depends upon \(\Delta v \) and particle number.
 – The new scheme relaxes growing weight problem.