A Collaborative National Center for Fusion & Plasma Research

Tokamaks

Subscribe to RSS - Tokamaks

A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container.

Scientists at PPPL further understanding of a process that causes heat loss in fusion devices

Everyone knows that the game of billiards involves balls careening off the sides of a pool table — but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in a phenomenon known as secondary electron emission (SEE), electrons strike the surface of the wall, causing other electrons to be emitted.

Computer simulations of DIII-D experiments shed light on mysterious plasma flows

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics have simulated a mysterious self-organized flow of the superhot plasma that fuels fusion reactions. The findings show that pumping more heat into the core of the plasma can drive instabilities that create plasma rotation inside the doughnut-shaped tokamak that houses the hot charged gas. This rotation may be used to improve the stability and performance of fusion devices.

Computer simulations of DIII-D experiments shed light on mysterious plasma flows

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and General Atomics have simulated a mysterious self-organized flow of the superhot plasma that fuels fusion reactions. The findings show that pumping more heat into the core of the plasma can drive instabilities that create plasma rotation inside the doughnut-shaped tokamak that houses the hot charged gas. This rotation may be used to improve the stability and performance of fusion devices.

PPPL and Max Planck physicists reveal experimental verification of a key source of fast reconnection of magnetic fields

Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Germany’s Max Planck Institute of Plasma Physics have discovered a source of the speed-up in a common form of reconnection. Their findings could lead to more accurate predictions of damaging space weather and improved fusion experiments.

PPPL and Max Planck physicists reveal experimental verification of a key source of fast reconnection of magnetic fields

Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Germany’s Max Planck Institute of Plasma Physics have discovered a source of the speed-up in a common form of reconnection. Their findings could lead to more accurate predictions of damaging space weather and improved fusion experiments.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

Advanced fusion code led by PPPL selected to participate in Early Science Programs on three new DOE Office of Science pre-exascale supercomputers

U.S. Department of Energy (DOE) high-performance computer sites have selected a dynamic fusion code, led by physicist C.S. Chang of the DOE’s Princeton Plasma Physics Laboratory (PPPL), for optimization on three powerful new supercomputers. The PPPL-led code was one of only three codes out of more than 30 science and engineering programs selected to participate in Early Science programs  on all three new supercomputers, which will serve as forerunners for even more powerful exascale machines that are to begin operating in the United States in the early 2020s.

New engineering head Valeria Riccardo has two decades of experience on fusion experiments

Valeria Riccardo, new head of engineering at the Princeton Plasma Physics Laboratory, is a United Kingdom transplant who comes to the position with more than 20 years of experience in project management, fusion design, and analysis on two fusion devices in the U.K. that are similar to the U.S. Department of Energy’s Princeton Plasma Physics Laboratory’s National Spherical Torus Experiment-Upgrade (NSTX-U).  

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000