A Collaborative National Center for Fusion & Plasma Research

Fusion reactor design

Subscribe to RSS - Fusion reactor design

The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator.

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

Physicist Fatima Ebrahimi at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection — the process in which magnetic field lines snap together and release energy — can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic particles and magnetic fields within electrically charged gas known as plasma can spark the onset of reconnection, a process that, when it occurs on the sun, can spew plasma into space. 

Top 10 PPPL stories that you shouldn’t miss

The past year saw many firsts in experimental and theoretical research at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL). Here, in no particular order, are 10 of the Laboratory’s top findings in 2016, from the first results on the National Spherical Torus Experiment-Upgrade to a new use for Einstein’s theory of special relativity to modeling the disk that feeds the supermassive black hole at the center of our galaxy.

1. First results of the National Spherical Torus Experiment-Upgrade (NSTX-U)

PPPL and Max Planck physicists confirm the precision of magnetic fields in the most advanced stellarator in the world

Physicist Sam Lazerson of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has teamed with German scientists to confirm that the Wendelstein 7-X (W7-X) fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.

PPPL physicists build diagnostic that measures plasma velocity in real time

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a diagnostic that provides crucial real-time information about the ultrahot plasma swirling within doughnut-shaped fusion machines known as tokamaks. This device monitors four locations in a plasma, enabling the diagnostic to make rapid calculations of how the velocity profiles of ions inside the plasma evolves over time.

PPPL physicists build diagnostic that measures plasma velocity in real time

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a diagnostic that provides crucial real-time information about the ultrahot plasma swirling within doughnut-shaped fusion machines known as tokamaks. This device monitors four locations in a plasma, enabling the diagnostic to make rapid calculations of how the velocity profiles of ions inside the plasma evolves over time.

First results of NSTX-U research operations presented at the International Atomic Energy Agency Conference in Kyoto, Japan

Researchers from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratories (PPPL) and collaborating institutions presented results from research on the National Spherical Torus Experiment Upgrade (NSTX-U) last week at the 26th International Atomic Energy Agency Conference (IAEA) in Kyoto, Japan. The four-year upgrade doubled the magnetic field strength, plasma current and heating power capability of the predecessor facility and made the NSTX-U the most powerful fusion facility of its kind.

COLLOQUIUM: What is the Fusion Nuclear Science Facility, What Does it Do, Why do We Need It...the Critical First Step Toward Power Plants

For fusion research to take the step beyond ITER it will have to embrace the fusion nuclear science along with fusion plasma science.   The hardware that surrounds and supports the plasma will become part of the challenge for research and development since fusion power plants will rely on these structures to recover the power emitted, breed the tritium fuel, provide neutron and gamma shielding, and provide the magnetic fields and the vacuum environment the plasma requires.  The Fusion Nuclear Science Facility (FNSF) is a fusion nuclear device that is considered as the first step in a

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000