A Collaborative National Center for Fusion & Plasma Research

Fusion energy

Subscribe to RSS - Fusion energy

The energy released when two atomic nuclei fuse together. This process powers the sun and stars.  Read more

Stewart Prager

Stewart Prager was the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the “Madison Symmetric Torus” (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the “bootstrap current” there—a key finding that has influenced the design of today’s tokamaks. He earned his PhD in plasma physics from Columbia University.

Physicists propose new way to stabilize next-generation fusion plasmas

A key issue for next-generation fusion reactors is the possible impact of many unstable Alfvén eigenmodes, wave-like disturbances produced by the fusion reactions that ripple through the plasma in doughnut-shaped fusion facilities called “tokamaks.” Deuterium and tritium fuel react when heated to temperatures near 100 million degrees Celsius, producing high-energy helium ions called alpha particles that heat the plasma and sustain the fusion reactions.

Team led by graduate student at PPPL produces unique simulation of magnetic reconnection

Jonathan Ng, a Princeton University graduate student at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), has for the first time applied a fluid simulation to the space plasma process behind solar flares northern lights and space storms. The model could lead to improved forecasts of space weather that can shut down cell phone service and damage power grids, as well as to better understanding of the hot, charged plasma gas that fuels fusion reactions.

PPPL physicist discovers that some plasma instabilities can extinguish themselves

Physicist Fatima Ebrahimi at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) has for the first time used advanced models to accurately simulate key characteristics of the cyclic behavior of edge-localized modes (ELMs), a particular type of plasma instability. The findings could help physicists more fully comprehend the behavior of plasma, the hot, charged gas that fuels fusion reactions in doughnut-shaped fusion facilities called tokamaks, and more reliably produce plasmas for fusion reactions.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000