A Collaborative National Center for Fusion & Plasma Research

Engineering

Subscribe to RSS - Engineering

This function manages the design, fabrication and operation of PPPL experimental devices, and oversees the Laboratory’s facilities and its electrical and infrastructure systems.

New model of plasma stability could help researchers predict and avoid disruptions in fusion machines

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have helped develop a new computer model of plasma stability in doughnut-shaped fusion machines known as tokamaks. The new model incorporates recent findings gathered from related research efforts and simplifies the physics involved so computers can process the program more quickly. The model could help scientists predict when a plasma might become unstable and then avoid the underlying conditions. 

New model of plasma stability could help researchers predict and avoid disruptions in fusion machines

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have helped develop a new computer model of plasma stability in doughnut-shaped fusion machines known as tokamaks. The new model incorporates recent findings gathered from related research efforts and simplifies the physics involved so computers can process the program more quickly. The model could help scientists predict when a plasma might become unstable and then avoid the underlying conditions.

Scientists at PPPL further understanding of a process that causes heat loss in fusion devices

Everyone knows that the game of billiards involves balls careening off the sides of a pool table — but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in a phenomenon known as secondary electron emission (SEE), electrons strike the surface of the wall, causing other electrons to be emitted.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

New feedback system could allow greater control over fusion plasma

Like a potter shaping clay as it spins on a wheel, physicists use magnetic fields and powerful particle beams to control and shape the plasma as it twists and turns through a fusion device. Now a physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.

New engineering head Valeria Riccardo has two decades of experience on fusion experiments

Valeria Riccardo, new head of engineering at the Princeton Plasma Physics Laboratory, is a United Kingdom transplant who comes to the position with more than 20 years of experience in project management, fusion design, and analysis on two fusion devices in the U.K. that are similar to the U.S. Department of Energy’s Princeton Plasma Physics Laboratory’s National Spherical Torus Experiment-Upgrade (NSTX-U).  

PPPL scientist uncovers physics behind plasma-etching process

Physicist Igor Kaganovich at the Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices. Specifically, the team found how electrically charged gas known as plasma makes the etching process more effective than it would otherwise be.

Pages

U.S. Department of Energy
Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

Website suggestions and feedback

Google+ · Pinterest · Instagram · Flipboard

PPPL is ISO-14001 certified

Princeton University Institutional Compliance Program

Privacy Policy

© 2017 Princeton Plasma Physics Laboratory. All rights reserved.

Princeton University
Princeton Plasma Physics Laboratory
P.O. Box 451
Princeton, NJ 08543-0451
GPS: 100 Stellarator Road
Princeton, NJ, 08540
(609) 243-2000